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Equivalence of the virtual-source method and wave-field deconvolution in seismic interferometry
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Seismic interferometry and the virtual-source method are related approaches for extracting the Green’s
function that accounts for wave propagation between receivers by making suitable combinations of the waves
recorded at these two receivers. These waves can either be excited by active, controlled, sources, or by natural
incoherent sources. We compare this technique with the deconvolution of the wave field recorded at different
receivers. We show that the deconvolved wave field is a solution of the same wave equation as that for the
physical system, but that the deconvolved wave forms may satisfy different boundary conditions than those of
the original system. We apply this deconvolution approach to the wave motion recorded at various levels in a
building after an earthquake, and show how to extract the building response for different boundary conditions.
Extracting the response of the system with different boundary conditions can be used to enhance, or suppress,
the normal-mode response. In seismic exploration this principle can be used for the suppression of surface-

related multiples.
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I. INTRODUCTION

Traditionally, imaging experiments rely on waves that are
emitted by active sources that are recorded by an array of
receivers. In seismic interferometry, also called virtual
source imaging, one extracts the Green’s function that ac-
counts for the wave propagation between receivers by mak-
ing suitable combinations of the waves recorded at these re-
ceivers. The recorded waves can be generated by a
superposition of active sources, or might be excited by inco-
herent noise (e.g., Refs. [1-3]). This technique is useful be-
cause it obviates the need for an active, controlled source by
replacing it by a receiver at the desired location.

Lobkis and Weaver [4] provide an elegant derivation of
this principle based on normal-mode theory that is applicable
to closed systems. It has been generalized to open systems
[5-13]. The extraction of the Green’s function has been ap-
plied to ultrasound data [14-16], helioseismology [17,18],
surface waves in the Earth’s crust [1-3,19], and the shallow
subsurface [20], and seismic exploration [21-24]. In these
applications the Green’s function is extracted by correlation
of observed wave forms. Snieder and Safak [25] applied de-
convolution of the motion recorded in a building to extract
the building response from recordings of the incoherent mo-
tion of the building.

In this work we show that deconvolution of the motion
recorded at several locations in a system can be used to re-
trieve the impulse response of that system. We also show that
by deconvolving different combinations of the recorded
waves, one can obtain the response of the system for differ-
ent boundary conditions. This makes it possible to obtain the
waves that would be recorded if the system were subject to
boundary conditions that differ from those of the original
physical system. Riley and Claerbout [26] coined the phrase
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Noah’s deconvolution for this principle, and Wapenaar et al.
[27] demonstrate this idea for a three-dimensional (3D) me-
dium.

In Sec. I we show the motion recorded at various levels
in the Robert A. Millikan Library in Pasadena, California,
and show that deconvolution of the motion recorded at dif-
ferent levels gives the impulse response of the building. In
Sec. III we show that the deconvolved waves satisfy the
same wave equation as that of the original data, but that the
boundary conditions of the deconvolved wave forms may
differ from those of the system in which the data are re-
corded. In Sec. IV we apply this theory to the motion re-
corded in the Robert A. Millikan Library in Pasadena, Cali-
fornia, and use it to extract the building response. We use
these data to show in Sec. V that the deconvolved wave
forms have a different resonance than does the physical
building. In Sec. VI we show how the suppression of multi-
ply reflected waves can be included in seismic interferom-
etry.

II. DECONVOLUTION OF THE WAVES RECORDED
IN THE MILLIKAN LIBRARY

We introduce the deconvolution of the wave forms with
measurements of the acceleration measured in the basement
and the ten floors of the Robert A. Millikan Library in
Caltech after the Yorba Linda earthquake of 3 September
2002 (ML=4.8, time: 02:08:51 PDT, 33.917N 117.776W
depth 3.9 km). The Millikan Library has been the focus of
numerous studies on the building response and its temporal
changes, e.g., Refs. [28-35]. The north-south component of
the acceleration recorded in the west side of the building is
shown in Fig. 1.

The motion in the building depends on the excitation of
the building at the base, the coupling of the building to the
subsurface, and the mechanical properties of the building. To
unravel these different ingredients of the recorded motion,
Snieder and Safak [25] applied a deconvolution of the mo-
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FIG. 1. The north-south component of the motion in the west
side of the Millikan Library after the Yorba Linda earthquake of 3
September 2002 (ML=4.8, time: 02:08:51 PDT, 33.917N
117.776W depth 3.9 km). The floor numbers where the data are
recorded are indicated at each trace. The bottom trace shows the
wave recorded in the basement (B).

tion recorded at different levels in the building with the mo-
tion at a selected reference level. The deconvolution of the
motion u(r,w) recorded at location r with the motion re-
corded at location ry is, in the frequency domain, given by

u(r,w)

(1)

D(r,r(), (J)) = .
M(rO’w)

In the presence of noise, notches in the spectrum of u(ry, )
cause numerical instabilities. For this reason we imple-
mented the deconvolution numerically by using the conven-
tional approach of “adding white noise:”

u(r, w)u’ (ro, »)

D(r,ry,w) = (2)

ju(ro, ) +e

In the examples that we show we set € to 10% of the mean
value of |u(ry,w)|?, and we did not apply any filtering to the
data. The regularized deconvolution (2) is not necessarily
optimal. Various other approaches to deconvolution can be
found in Ref. [36].

The waves deconvolved with the waves recorded in the
basement are shown in Fig. 2. For the deconvolution in this
example and all other examples, the wave forms shown in
Fig. 1 between =0 s and t=40 s have been used. The de-
convolved wave in the basement is a bandpass-filtered delta
function, because any signal deconvolved with itself, with
white noise added, gives such a function. The deconvolved
waves at the second floor and higher consist of a superposi-
tion of upgoing and downgoing waves for early times, while
for later times the motion is dominated by a monochromatic
resonance that decays exponentially with time. These decon-
volved waves are analyzed in detail by Snieder and Safak
[25].

The deconvolved waves in Fig. 2 show a wave state of the
building as if the motion at the base of the building were
given by a delta function. For early times this pulse propa-
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FIG. 2. The wave forms of Fig. 1 at the different floors after
deconvolution with the waves recorded in the basement.

gates upward in the building with a velocity given by the
shear velocity of the building. At r=0, the wave field is non-
zero only at the base of the building. This means that the
wave field at that moment has collapsed onto a spatially
localized pulse. This is reminiscent of the virtual source
method [22,23], wherein waves recorded at different receiv-
ers are correlated to give a new wave field that corresponds
to an impulsive source at one of the receivers. In this work
we make the connection between the virtual source method
and deconvolution, and illustrate this with the motion re-
corded in the Millikan Library.

II1I. PROPERTIES OF THE DECONVOLVED WAVE FIELD
D (l‘ sTos w)

The connection between the deconvolved waves and the
waves generated by a virtual source hinges on the causality
principle which states that waves cannot move with a veloc-
ity higher than the maximum wave velocity c¢ in the medium.
Figure 3 illustrates this principle for the special case for one
space dimension. The wave field at z=z, and time =0 only
influences the wave field in the grey-shaded region on the

FIG. 3. The region where the solution is influenced by the wave
field at z=z and time =0 (grey shading). D(z,z,?) is nonzero only
in this region. At z=z, this function is given by D(zq,z¢,t)=8(¢).
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right, and is influenced only be the wave field in the grey-
shaded region on the left. By analogy with the jargon used in
the theory of special relativity [37], we refer to these regions
as the light cones. For a spatially variable velocity one could
generalize the boundary of the light cones to be determined
by the one-way travel time in the medium, but this refine-
ment is not essential for the arguments used here. The second
principle that we use, valid for a linear, time-invariant sys-
tem, is given by the following theorem:

Theorem: In source-free regions D(r,r,,w) satisfies the
same wave equation as does u(r, w).

To show this, let us suppose that the wave field satisfies

L(r,0)u(r,w) =0, 3)
where L is a linear differential operator. [For example, for
the Helmholtz equation L=V?+w?/c?(r).] The right hand

side of expression (3) is equal to zero because of the absence
of sources. Applying the operator L to Eq. (1) gives

u(r, ) B

LD(r,rp,w) =L Lu(r,w)=0. (4)

M(ro, w) - M(ro, (1))

In the second identity we used that L acts on the r coordinate
rather than on rj, and we used expression (3) in the last
identity. Expression (4) proves that D(r,r(,w) satisfies the
same equation as does the wave field; therefore this quantity
also satisfies the causality principle.

A number of comments can be made about this derivation.
First, expression (4) holds in any number of dimensions.
Second, the wave field u(r, w) may be a vector field, and the
operator L can be a matrix differential operator. The theorem
still holds as long as the deconvolution is carried out with
respect to linear superposition of the components of the wave
field, or its derivatives. Third, suppose we had deconvolved
two different solutions u; and u,, both of which satisfy the
differential equation (3) but with different boundary condi-
tions. In that case the deconvolved wave form D(r,r(,)
=u,(r,w)/u,(ry,w) also satisfies the differential equation
(3). Fourth, we have shown that D(r,r,, w) satisfies the same
differential equation as does the wave field u(r,w), but
D(r,ry,w) does not necessarily satisfy the same boundary
conditions as does for u(r,w). We show in Sec. V how this
can be used to create virtual sources in a hypothetical system
with boundary conditions that differ from those in the physi-
cal system. Fifth, the reasoning used for the deconvolved
waves also applies to correlation of the waves, defined in the
frequency domain by

C(r,rp,w) = u(r,w)u’ (ry, »). (5)

C(r,ry,w) satisfies the same wave equation as does u(r, w);
the proof is identical to that for the deconvolved waves. Fi-
nally, the wave field obtained by the regularized deconvolu-
tion (2) also satisfies the same wave equation as does the
original system.

Definition (1) implies that u(r, w)=D(r,ry, w)u(ry, ). In
the time domain, this corresponds to
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u(r,1) = J D(r,ro.t Yu(ro,t — 1')dr’. (6)

The function D(r,r,") thus relates the wave field at (r,7) to
the wave field at (ry,t—t"). D(r,rq,t’) is a solution of the
wave equation, but it is not necessarily equal to the Green’s
function that accounts for the wave propagation between ry
and r. In the following we analyze the properties of the so-
lution D(r,r,t") for the special case of one space dimension
when no sources are present between the receivers, for which
we can therefore use a causality principle.

The causality principle states that u(r,z) and u(r,,t') are
unrelated when one of the space-time points lies outside of
the light cone of the other space-time point. This principle
holds for the physical wave field; for the deconvolved waves
it means that

D(z,20,1) =0 for |t| <|z-z|lc. (7)

This condition holds in one space dimension when there are
no sources between z and zy. To see the limitation of one
space dimension consider the two-dimensional geometry of
Fig. 4 wherein the distances from a source to two receivers
are equal. For an isotropic source in a homogeneous me-
dium, the waves recorded at the two receivers are identical;
hence D(r,ry,7)=48(¢), which violates condition (7). In one
dimension, when a source is present between receivers at
locations z and z,, the condition (7) does again not hold
because the waves arriving at the two receivers will have a
lag time smaller than |z—zy|/c. In contrast when no sources
are present between the receivers, the waves physically
travel from one receiver to the other, and the causality con-
dition (7) holds for the deconvolved waves.
Condition (7) implies that

D(z,70,t=0)=0 for z# z,. (8)
Furthermore, from definition (1)
u(zg,
Dlagyzp) = 2 _ . 9)
M(Zo, w)

so that in the time domain
D(z9,20,1) = &(1). (10)

These properties of the deconvolved waves are illustrated in
Fig. 3. D is nonzero only in the gray-shaded light cone that
corresponds to the point z, and time t=0. Along the line z
=79, D is given by a delta function; hence

D(zp,20,t)=0 for ¢# 0. (11)

The wave field sketched in Fig. 3 corresponds for t>0 to
the wave field excited by a point source at z=z, at time ¢
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=0. Equation (4) states that this deconvolved wave field sat-
isfies the same differential equation as the original wave
field. As shown in Fig. 3, the wave field at =0 is localized at
the point z;. For >0 the waves radiate from that point and
propagate into the medium. For >0, the wave field is equal
to the wave field that would be excited by a physical delta
function source placed at z.

For #<<0 the solution in Fig. 3 is nonzero as well. If a
physical source would be present, the wave field could be
quiescent for #<<0. Because of the absence of a physical
source, one calls the focused wave field at location z; at time
t=0 a virtual source. The concept of virtual sources has been
used in exploration seismology to create a wave field that
emanates from a receiver in the subsurface [22,23]. For these
reasons, the deconvolved waves are equivalent to a virtual
source placed at z=z,.

Note that because of condition (11), the deconvolved
waves satisfy a boundary condition at z=z, that the original
wave field, in general, does not satisfy. We can exploit this to
create a wave field generated by a virtual source that satisfies
more useful boundary conditions than does the original wave
field.

The wave field sketched in Fig. 3 is identical to the wave
field used by Rose [38]. At =0 the wave field has collapsed
onto a single point z=z,. Rose shows that the solution of the
Newton-Marchenko equation (an exact inverse-scattering
method) corresponds to this special case. The difference be-
tween our approach and that of Rose [38] is that we assume
that the wave field has been measured at z, whereas he
shows how this wave field can be constructed from reflected
and transmitted waves by solving the Newton-Marchenko
equation.

The reader may wonder why we have deconvolved the
wave field rather than applying another operation, such as
correlation. Consider a multiplication with a general function
W(w) in the frequency domain that transforms the recorded
waves u(z,w) into a new wave field,

unew(zv (1)) = W(w)u(z,w). (12)

Let us ask the following question: what function W(w)
should we use so that the wave field at a target level z is, in
the time domain, given by a delta function? Since the delta
function has a constant Fourier transform, this corresponds to
the requirement

W(w)u(zg,w) = 1. (13)

Inserting the solution W(w)=1/u(zy, ) into expression (12)
shows that the desired wave field is given by the deconvolu-
tion of u(z,w) with u(zy,w). We show in Sec. VI how a
different requirement can be used to compute a new wave
field from the data that has upgoing waves only at a specified
level.

IV. EXAMPLE, DECONVOLVED WAVE FORMS
FOR THE MILLIKAN LIBRARY

As an example of the creation of a virtual source by de-
convolution we show in Fig. 2 the wave forms at every level

PHYSICAL REVIEW E 73, 066620 (2006)

in the Millikan Library after a deconvolution with the waves
recorded at the base of the building. This wave field is given
by

u(z,w)

u(zbasw w) ' (14)

D(Z’Zbasw (,U) =

where z;,,,, denotes the location of the basement.

The deconvolved wave at the basement, the lower trace in
Fig. 2, is given by a band-limited delta function. As shown in
the previous section, this follows from the deconvolution
collapsing the wave field at the target level into a delta func-
tion. Physically this operation corresponds to an interesting
change in the wave field. The raw data in Fig. 1 recorded at
the basement are a complex combination of an incoming P
waves, incoming S waves, surface waves, and reflections of
waves by the base of the building. The deconvolution col-
lapses this complex wave field onto a band-limited delta
function. Therefore the deconvolved wave field in Fig. 2 cor-
responds to the motion of the building as if it were excited
by an impulsive excitation at the base, subject to the bound-
ary condition that the base is otherwise fixed (Dirichlet
boundary conditions).

Indeed, the deconvolved waves of Fig. 2 are excited by an
upgoing traveling wave radiated by the delta function exci-
tation at the base. This upward traveling wave reflects from
the top of the building, and possibly also at intermediate
levels, to create a downgoing wave. Between =0 s and ¢
=1 s, the deconvolved wave field consists primarily of a su-
perposition of upward- and downward-going traveling
waves. For later times, the deconvolved waves develop the
character of a resonance of the building whose amplitude
increases with the height in the building. This part of the
signal corresponds to the normal modes of the building [25].

Note that the deconvolved waves in Fig. 2 are essentially
zero before the first-arriving upward propagating wave. As
shown in Sec. III, the deconvolved waves are nonzero only
in the gray-shaded region shown in Fig. 3. (Since in Fig. 2
time, rather than ct, is shown along the horizontal axis, the
first arriving waves appear at an angle that is much steeper
than 45°.)

As a next example we show in Fig. 5 the wave field
deconvolved with the waves recorded at the fifth floor. In the
frequency domain, this deconvolved wave field is defined as

u(z, w)
u(zs, )’

D(z,z5,w) = (15)
with zs5 the height of the fifth floor. Note that in Fig. 5 the
trace at the fifth floor (marked in the left with the label “5”)
is a bandpass-filtered delta function. For positive time, an
upward going and downward going wave are radiated from
the fifth floor. The upward and downward going waves are
followed by weaker waves caused by reflections within the
building and from the base and the top of the building.

The deconvolved waves in Fig. 5 are acausal. For nega-
tive time, upward going and downward going waves are
present that collapse onto a delta function at =0 at the fifth
floor. The deconvolved waves are acausal because there is no
physical source at the fifth floor. Since the deconvolved
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FIG. 5. The wave forms of Fig. 1 at the different floors after
deconvolution with the waves recorded at the fifth floor.

waves satisfy the wave equation of the building, and since
there is no physical source at the fifth floor, the deconvolved
wave field must be nonzero at negative times in order to
create a delta function response at the fifth floor; hence we
speak of a virtual source. Note that the deconvolved waves in
Fig. 5 show a bandpass-filtered version of the cartoon of Fig.
3 (again, with 7 rather than ct along the horizontal axis).

One may wonder why the wave forms obtained by decon-
volution with the base of the building shown in Fig. 2 do not
display acausal arrivals. The base of the building and the
fifth floor are different because there is no physical source at
the fifth floor, while the base of the building is being shaken
by the earthquake. The shaking of the base of the building
acts as an external source. Because of this external source,
one does not need acausal arrivals to generate a wave field
given by a delta function at the base of the building. The
causality properties of the deconvolved wave field are thus
related to the presence (or absence) of a physical source of
the recorded waves.

V. CHANGED BOUNDARY CONDITION

In this section we describe a more subtle property of the
wave field obtained by deconvolution with the motion at the
base of the building, as shown in Fig. 2. In the building,
downward propagating waves are reflected off the base of
the building with a reflection coefficient R(w). This reflection
coefficient follows from the boundary conditions that the
motion in the building satisfies. As shown in expression (10),
and seen in the bottom trace of Fig. 2, the deconvolved wave
field at the base of the building is given by a band limited
delta function. The deconvolved wave field at the base of the
building thus vanishes for r# 0. As argued in Sec. III, the
deconvolved waves do not necessarily satisfy the same
boundary conditions as those of the original wave field. The
deconvolved wave field has a reflection coefficient

Rdec':_l (16)

at the base of the building. This can be seen as follows.
According to expression (11) the deconvolved wave field at
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time (s)

FIG. 6. The wave form recorded at the top floor deconvolved
with the wave forms recorded at different floors.

the base vanishes for ## 0. The only way in which this can
happen is that a downgoing wave that strikes the base of the
building is canceled by an upward traveling wave with the
same strength and opposite polarity. This corresponds to the
reflection coefficient R,,.=—1, which differs from the reflec-
tion coefficient R(w) of the building.

A change in the boundary conditions at the base of the
building should change the corresponding normal modes. A
building of height H and shear velocity ¢, and a reflection
coefficient —1 at its base, has a fundamental mode period that
is given by [39]

T=—1. (17)
c

The deconvolved waves have a reflection coefficient —1 at
the target level z,. This means that the wave field obtained by
deconvolution of the wave field above the target level z is
equal to the wave field of a fictitious building that is cut off
at height z, and that has reflection coefficient —1 at that level.
Following expression (17), the fundamental mode of that fic-
titious building has a period

4(H -z
7= W20 (18)
c
In order to illustrate this, we show in Fig. 6 the wave field
at the top floor deconvolved with the wave field at different
target levels; i.e., this figure shows

u(H,w)
u(z,w)

This deconvolved wave field differs from that shown in Fig.
2 because that figure shows that wave field at every level
deconvolved with the waves recorded at a fixed level (the
base), while Fig. 6 shows the wave field at one level (the top)
deconvolved with waves recorded at different levels. Setting
z=H in expression (19) gives unity in the right hand side. In
the time domain this corresponds to the band-limited delta
function in the top trace of Fig. 6.

fz,0) = (19)
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FIG. 7. Amplitude spectra of the deconvolved waves of Fig. 6
for the basement and lower three floors of the building. The vertical
lines give an estimate of the normal mode of the building that is
truncated at the corresponding height.

The lowest three traces of Fig. 6 show a damped normal
mode whose period decreases with increasing floor number.
This can be seen in the amplitude spectrum of the decon-
volved motion at the lowest four levels, shown in Fig. 7.
Indicated by the vertical lines in that figure are the normal-
mode frequencies of expression (18). The normal-mode fre-
quencies of this fictitious building explain the resonance of
the deconvolved wave field well. This is an experimental
confirmation that the deconvolved wave field indeed satisfies
boundary conditions that differ from those of the original
wave field.

VI. MULTIPLE REMOVAL BY DECONVOLUTION
WITH UPGOING WAVES

Imaging techniques used in radar imaging and reflection
seismology are based on singly reflected waves. In reflection
seismology these waves are referred to as primaries. In prac-
tice one does not record only the singly reflected waves be-
cause multiply reflected waves are also present in the data. In
exploration seismology, these multiply reflected waves are
referred to as multiples. The strongest multiples are those
reflected from the Earth’s free surface; these are called
surface-related multiples (e.g., Refs. [40-43]). In marine
seismic surveys the multiples reflected at the sea surface are
strong because they have a reflection coefficient for pressure
of approximately —1.

In reflection seismology one often seeks to remove the
surface-related multiples because they may be erroneously
imaged onto spurious reflectors that are not present in the
subsurface. In the absence of a free surface, the only down-
going wave at receivers placed above reflectors would be due
to the wave excited by the source. Then, one would record
the one downgoing wave excited by the source, plus upgoing
waves that are generated by reflectors in the Earth. (These
reflected waves consist of singly reflected waves and internal
multiples that are multiple reflections between layers in the
subsurface.) Now suppose that the free surface is present,
then the downgoing waves recorded at the receivers consist
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z

FIG. 8. The region where D(z,z,1) is nonzero, (shown by grey
shading). At 7=z, this function has downgoing waves only, except
at t=0 where a delta function pulse is moving upwards.

of the direct wave that is excited by the source, plus all the
waves that are reflected from the free surface. This suggests
that if we want to remove the surface-related multiples, we
need to manipulate the data in such a way that the downgo-
ing wave field consists of the direct downgoing wave only.
We have seen in the previous section that we can change the
boundary conditions of the wave field by carrying out a suit-
able deconvolution of the wave field recorded at different
levels.

In the example of exploration seismology, the source and
the free surface are above the region of interest. For the
Millikan Library the earthquake excites the building from
below, and the building extends upward. For this reason, the
roles of “up” and “down” are reversed in exploration seis-
mology and in the Millikan Library. In the following we
focus on the Millikan Library. It is our goal to manipulate the
data in such a way that reflections from the base of the build-
ing correspond to surface-related multiples that we wish to
remove.

In the following we use that the wave field can be decom-
posed in upgoing waves u, and downgoing waves u_:

u(z,w) =u(z,0) +u_(z,w). (20)

The multiple reflections at the base of the building are re-
moved by deconvolving the wave field at every level with
the upgoing wave at the base of the building to give

u(z, w)

M+(Zo,w) . (21)

D, (2,20, ) =
By inserting the decomposition (20) into this expression one
obtains for the target level z=z:

u_(29. @)

. 22
“+(Z0, w) @2)

D (zp,z0,@) =1+

The first term corresponds, in the time domain, to a delta
function, while the second term contains downgoing waves
in the numerator. Note that it is immaterial whether z, is the
base of the building or an arbitrary level.

The wave state (21) is sketched in Fig. 8. Since D(z,z,, ®)
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satisfies the wave equation of the building, this function has
the same causality properties as the original wave field, and
the solution is nonzero in the grey-shaded region only. Ac-
cording to expression (22) the upgoing wave at the target
level z; is given by a delta function. Apart from this impul-
sive upgoing wave, there are only downgoing waves at that
level. The last term of expression (22) gives the reflection
response that is, in the frequency domain, defined as the ratio

of the waves propagating in the “+” and “-” directions:
Uu_\Zp,
Hw) = LREN (23)
u (29, w)

The wave field (21) thus constitutes the motion of the build-
ing for an impulsive wave launched upward on the building
at the target level z;, and for which only downward-going
waves are present at that level for ## 0. When the target level
is the base of the building this procedure removes the
surface-related multiples, because all reflections from the
base of the building are compressed by the deconvolution
into a single upgoing delta function. Since for t#0 only
downgoing waves exist at the base of the building, this wave
state satisfies radiation boundary conditions at the target
level z, (Fig. 8).

In our example of the Millikan Library the dominant
wavelength is much larger than the width of the building,
and the wave propagation is quasi-one-dimensional. In that
case the separation of upgoing and downgoing waves can be
achieved by using that, in the time domain, the upgoing and
downgoing waves satisfy [44]

%_1(&1 a_u>

= -c
ot 2\ ot dz

u_ 1(du u

—=—|l—4c— . (24)
ot 2\ ot 0z

We computed du/dz by computing the finite difference of the
waves recorded at the target level z, and the adjacent level
above using the wave velocity ¢=322 m/s obtained by
Snieder and Safak [25] from a normal-mode analysis of the
Millikan Library.

Figure 9 shows the wave field (21) after deconvolving the
motion at every level with the upgoing wave in the base-
ment. An upward-propagating wave is launched from the
base of the building that is reflected by the top of the build-
ing, and, to a lesser extent, by the floors within the building.
A comparison with Fig. 2 is interesting. (Note that the figures
have a different time scale.) Figure 2, obtained by deconvo-
lution with the full wave field at the base, displays a strong
resonance that is absent in Fig. 9. The physical reason for
this is that, as shown in Sec. IV, the deconvolved waves of
Fig. 2 give the motion of the building when the reflection
coefficient at the base is equal to —1. This strong reflection
coefficient causes the pronounced normal mode in Fig. 2. By
contrast, the wave field in Fig. 9 has, apart from an impulsive
upgoing waves, only downgoing waves at the base of the
building. This solution therefore satisfies a radiation bound-
ary condition at the base that precludes normal-mode solu-
tions. This is another example that the deconvolved wave
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FIG. 9. The wave forms of Fig. 1 at every floor deconvolved
with the upgoing wave in the basement.

field may satisfy other boundary conditions than those of the
original wave field.

One can, of course, also carry out a deconvolution with
respect to the downgoing waves at the target level, defined as

u(z, w)

D_(z,zg,w) = (25)

u_(z9, @)

Using the basement as the target level this deconvolved wave
field is shown in Fig. 10. This figure should be compared
with Fig. 9, obtained for deconvolution with respect to the
upgoing wave. The deconvolved waves in Fig. 10 have an
impulsive downgoing wave at the base; apart from this wave
the waves propagate upward at that level. This solution is
acausal. Physically it corresponds to a solution where acausal
upward propagating waves are launched at the base of the
building so that only one downward going impulsive wave at
t=0 is present at the base of the building. Note that Fig. 10 is
not the time-reversed version of Fig. 9, as one might perhaps
expect. The Millikan Library displays a significant intrinsic
attenuation [25], which breaks the invariance for time rever-
sal [45,46].

-
o

i

]
—

-0.5 0 0.5
time (s)

—_

FIG. 10. The wave forms of Fig. 1 at every floor deconvolved
with the downgoing wave in the basement.
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Figure 9 gives the motion of the building when an upward
propagating impulsive wave is launched at the base of the
building, and where the reflected waves satisfy a radiation
boundary condition at the base. The attenuation in the build-
ing causes a decay of the waves with time. By contrast, the
solution of Fig. 10 gives the motion of the building where
upward propagating waves at the base of the building cause
a downward propagating impulsive wave at the base at #=0.
Because of the attenuation in the building, these upward
propagating waves, and their reflection, also decay with in-
creasing time. To correct for this attenuation, the upward
propagating waves are stronger than they would be in the
absence of intrinsic attenuation. These effects combined
cause the waves in Fig. 10 to be stronger than those in Fig. 9.

In the Millikan Library, the wave propagation is essen-
tially in one dimension for the employed frequencies. The
generalization of the ideas presented here to exploration geo-
physics involves the nontrivial extension to more space di-
mensions. A possible way to achieve this is to make a plane-
wave decomposition of the data. When the three components
of the data are known at the free surface, or the pressure and
the three components of the displacement are known at the
ocean floor, one can separate the wave field in upgoing and
downgoing waves [44,47].

VII. DISCUSSION

We have shown that the deconvolution of the waves re-
corded at different locations leads to a new solution of the
system that governs the waves, but in general with different
boundary conditions. The associated change in the boundary
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conditions can be useful for practical purposes.

In Sec. V we used this property to obtain the motion of
the Millikan Library as if its base had been fixed. In general,
the attenuation of waves in buildings depends on both the
intrinsic attenuation and the radiation damping at the base of
the building. The deconvolved waves have a reflection coef-
ficient —1 rather than the physical reflection coefficient R(w).
The radiation damping that is associated with a reflection
coefficient |R(w)| <1 has been eliminated from the problem
by considering the waves deconvolved with the motion of
the base. This makes it possible to separate the contributions
of anelastic attenuation and radiation damping.

By carrying out the deconvolution with respect to the up-
going waves at one level, we create yet another state in the
building, one for which the boundary condition is a radiation
boundary condition. In this wave state, reflections from the
base of the building have been switched off. This principle
can also be used in seismic exploration for the suppression of
surface-related multiples. The similarity of the deconvolution
approach presented here and the virtual-source method
[22,23] suggests that it is possible to reformulate the virtual-
source method to include changes in the boundary conditions
as well. This may make it possible to fold the elimination of
surface-related multiples into the virtual-source method.
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